The description of protein internal motions aids selection of ligand binding poses by the INPHARMA method
2012
Authors: Stauch B, Orts J, Carlomagno T
CellNetworks People: Carlomagno Teresa
Journal: J Biomol NMR.

Protein internal motions influence observables of NMR experiments. The effect of internal motions occurring at the sub-nanosecond timescale can be described by NMR order parameters. Here, we report that the use of order parameters derived from Molecular Dynamics (MD) simulations of two holo-structures of Protein Kinase A increase the discrimination power of INPHARMA, an NMR based methodology that selects docked ligand orientations by maximizing the correlation of back-calculated to experimental data. By including internal motion in the back-calculation of the INPHARMA transfer, we obtain a more realistic description of the system, which better represents the experimental data. Furthermore, we propose a set of generic order parameters, derived from MD simulations of globular proteins, which can be used in the back-calculation of INPHARMA NOEs for any protein-ligand complex, thus by-passing the need of obtaining system-specific order parameters for new protein-ligand complexes.